|
|
|
|
|
Mckenzie, David; Axelsson, Michael; Chabot, Denis; Claireaux, Guy; Cooke, Steven J.; Corner, Richard A.; De Boeck, Gudrun; Domenici, Paolo; Guerreiro, Pedro M.; Hamer, Bojan; Jorgensen, Christian; Killen, Shaun S.; Lefevre, Sjannie; Marras, Stefano; Michaelidis, Basile; Nilsson, Goran E.; Peck, Myron A.; Perez-ruzafa, Angel; Rijnsdorp, Adriaan D.; Shiels, Holly A.; Steffensen, John F.; Svendsen, Jon C.; Svendsen, Morten B. S.; Teal, Lorna R.; Van Der Meer, Jaap; Wang, Tobias; Wilson, Jonathan M.; Wilson, Rod W.; Metcalfe, Julian D.. |
The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and... |
Tipo: Text |
Palavras-chave: Biomarkers; Ecological models; Fisheries; Fry paradigm; Individual variation; Telemetry. |
Ano: 2016 |
URL: https://archimer.ifremer.fr/doc/00616/72841/72999.pdf |
| |
|
|
Lefevre, Sjannie; Wang, Tobias; Mckenzie, David. |
Warming of aquatic environments as a result of climate change is already having measurable impacts on fishes, manifested as changes in phenology, range shifts and reductions in body size. Understanding the physiological mechanisms underlying these seemingly universal patterns is crucial if we are to reliably predict the fate of fish populations with future warming. This includes an understanding of mechanisms for acute thermal tolerance, as extreme heatwaves may be a major driver of observed effects. The hypothesis of gill oxygen limitation (GOL) is claimed to explain asymptotic fish growth, and why some fish species are decreasing in size with warming; but its underlying assumptions conflict with established knowledge and direct mechanistic evidence is... |
Tipo: Text |
Palavras-chave: Critical thermal maximum; CTmax Metabolism; Scope for activity; Temperature tolerance. |
Ano: 2021 |
URL: https://archimer.ifremer.fr/doc/00686/79797/82596.pdf |
| |
|
|
Jutfelt, Fredrik; Norin, Tommy; Ern, Rasmus; Overgaard, Johannes; Wang, Tobias; Mckenzie, David; Lefevre, Sjannie; Nilsson, Goran E.; Metcalfe, Neil B.; Hickey, Anthony J. R.; Brijs, Jeroen; Speers-roesch, Ben; Roche, Dominique G.; Gamperl, A. Kurt; Raby, Graham D.; Morgan, Rachael; Esbaugh, Andrew J.; Grans, Albin; Axelsson, Michael; Ekstrom, Andreas; Sandblom, Erik; Binning, Sandra A.; Hicks, James W.; Seebacher, Frank; Jorgensen, Christian; Killen, Shaun S.; Schulte, Patricia M.; Clark, Timothy D.. |
Tipo: Text |
|
Ano: 2018 |
URL: https://archimer.ifremer.fr/doc/00666/77823/79997.pdf |
| |
|
|
|