Drugs acting on the central nervous system (CNS) have to cross the blood-brain barrier (BBB) in order to perform their pharmacological actions. Passive BBB diffusion can be partially expressed by the blood/brain partition coefficient (logBB). As the experimental evaluation of logBB is time and cost consuming, theoretical methods such as quantitative structure-property relationships (QSPR) can be useful to predict logBB values. In this study, a 2D-QSPR approach was applied to a set of 28 drugs acting on the CNS, using the logBB property as biological data. The best QSPR model [n = 21, r = 0.94 (r² = 0.88), s = 0.28, and Q² = 0.82] presented three molecular descriptors: calculated n-octanol/water partition coefficient (ClogP), polar surface area (PSA), and... |