Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 3
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Forecasting Demand for Rural Electric Cooperative Call Center AgEcon
Kim, Taeyoon; Kenkel, Philip L.; Brorsen, B. Wade.
This research forecasts peak call volume to allow a centralized call center to minimize staffing costs. A Gaussian copula is used to capture the dependence among nonnormal distributions. Peak call volume can be easily and more accurately predicted using the marginal probability distribution with the copula function than without using a copula. The modeling approach allows simulating adding another cooperative. Ignoring the dependence that the copula includes, causes peak values to be underestimated.
Tipo: Conference Paper or Presentation Palavras-chave: Call center data; Empirical distribution; Extreme value theory; Forecasting; Gamma distribution; Gaussian copula; Simulation; Agribusiness; Demand and Price Analysis; Research Methods/ Statistical Methods.
Ano: 2009 URL: http://purl.umn.edu/46809
Imagem não selecionada

Imprime registro no formato completo
ANALYSIS OF U.S. RICE POLICY IN A GLOBAL STOCHASTIC FRAMEWORK AgEcon
Chavez, Eddie C.; Wailes, Eric J..
Replaced with revised version of paper 04/13/11.
Tipo: Conference Paper or Presentation Palavras-chave: Government payments; Stochastic analysis; Deterministic analysis; Rice trade; Empirical distribution; Arkansas Global Rice Model; Agricultural and Food Policy; Demand and Price Analysis; International Relations/Trade; Q11; Q17.
Ano: 2011 URL: http://purl.umn.edu/98846
Imagem não selecionada

Imprime registro no formato completo
Efficient Estimation of Copula Mixture Model: An Application to the Rating of Crop Revenue Insurance AgEcon
Ghosh, Somali; Woodard, Joshua D.; Vedenov, Dmitry V..
The association between prices and yields are of paramount importance to the crop insurance programs. Proper estimation of the association is highly desirable. Copulas are one such method to measure the dependence structure. Five single parametric copulas, a non- parametric copula and their fifteen different combinations taking a mixture of two different copulas at a time have been used in the crop insurance rating analysis. Using data of corn from 1973-2009 for 602 counties in the Mid-West area two different efficient methods have been proposed to generate the optimal mixtures using the cross validation approach. A resampling technique is used to check for the significance of the expected indemnities.
Tipo: Conference Paper or Presentation Palavras-chave: Copulas; Crop Insurance; Cross-Validation; Empirical distribution; GRIP; Indemnities; Out-Of-Sample Log-Likelihood; Agricultural Finance; Q14.
Ano: 2011 URL: http://purl.umn.edu/103738
Registros recuperados: 3
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional