Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions AgEcon
Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N..
Land-use changes involve important economic and environmental effects with implications for international trade, global climate change, wildlife, and other policy issues. We use an econometric model to identify factors driving land-use change in the United States between 1982 and 1997. We quantify the effects of net returns to alternative land uses on private landowners’ decisions to allocate land among six major uses, drawing on detailed micro-data on land use and land quality that are comprehensive of the contiguous U.S. This analysis provides the first evidence of the relative historical importance of markets and Federal farm policies affecting land-use changes nationally.
Tipo: Working or Discussion Paper Palavras-chave: Land Use; Land-Use Change; Econometric Analysis; Simulations; Land Economics/Use; O51; Q15.
Ano: 2008 URL: http://purl.umn.edu/44534
Imagem não selecionada

Imprime registro no formato completo
CORRECTING FOR SPATIAL EFFECTS IN LIMITED DEPENDENT VARIABLE REGRESSION: ASSESSING THE VALUE OF "AD-HOC" TECHNIQUES AgEcon
De Pinto, Alessandro; Nelson, Gerald C..
A common test for spatial dependence in regression analysis with continuous dependent variables is the Moran’'s I. For limited dependent variable models, the standard definition of a residual breaks down because yi is qualitative. Efforts to correct for potential spatial effects in limited dependent variable models have relied on ad-hoc methods such as including a spatial lag variable or using a regular sample that omits neighboring observations. Kelejian and Prucha have recently developed a version of Moran’'s I for limited dependent variable models. We present the statistic in a more accessible way and use it to test the value of previously-used ad-hoc techniques with a specific data set. Keywords: Moran’s I, Spatial Autocorrelation, Limited Dependent...
Tipo: Conference Paper or Presentation Palavras-chave: Moran’'s I; Spatial Autocorrelation; Limited Dependent Variable Models; Land-Use Change; Geographical Information Systems (GIS); Research Methods/ Statistical Methods.
Ano: 2002 URL: http://purl.umn.edu/19782
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional