ABSTRACT This study examines the capability of an artificial neural network (ANN) approach using a backpropagation-learning algorithm to predict performance parameters for a chisel plow at three field sites with differing soils. The draft force, effective field capacity (EFC), fuel consumption rate (FC), overall energy efficiency (OEE), and rate of plowed soil volume (SVR) were predicted at varying plowing speeds, plowing depths, soil moisture contents, soil bulk densities, soil texture indexes, and tractor powers. Collected field data was divided into a training set (for predicting the required parameters) and testing set (for model validation). For the ANN algorithm, the number of hidden layers, neurons, and transfer functions were varied to construct... |