Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Which DTW Method Applied to Marine Univariate Time Series Imputation ArchiMer
Phan, Thi-thu-hong; Poisson-caillault, Emilie; Lefebvre, Alain; Bigand, Andre.
Missing data are ubiquitous in any domains of applied sciences. Processing datasets containing missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). Therefore, the aim of this paper is to build a framework for filling missing values in univariate time series and to perform a comparison of different similarity metrics used for the imputation task. This allows to suggest the most suitable methods for the imputation of marine univariate time series. In the first step, the missing data are completed on various mono-dimensional time series. To fill a missing sub-sequence (gap) in a time series, we first find the most similar sub-sequence to the sub-sequence before (resp. after) this gap according a...
Tipo: Text Palavras-chave: Univariate time series; Missing data; Dynamic Time Warping (DTW); Derivative DTW (DDTW); Dynamic Time Warping-D (DTW-D); Adaptive Feature Based DTW (AF-BDTW); Similarity measures.
Ano: 2017 URL: http://archimer.ifremer.fr/doc/00435/54681/56096.pdf
Imagem não selecionada

Imprime registro no formato completo
DTW-Approach for uncorrelated multivariate time series imputation ArchiMer
Phan, Thi-thu-hong; Poisson Caillault, Emilie; Bigand, Andre; Lefebvre, Alain.
Missing data are inevitable in almost domains of applied sciences. Data analysis with missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). Some well-known methods for multivariate time series imputation require high correlations between series or their features. In this paper, we propose an approach based on the shape-behaviour relation in low/un-correlated multivariate time series under an assumption of recurrent data. This method involves two main steps. Firstly, we find the most similar sub-sequence to the sub-sequence before (resp.after) a gap based on the shape-features extraction and Dynamic Time Warping algorithms. Secondly, we fill in the gap by the next (resp.previous) sub-sequence...
Tipo: Text Palavras-chave: Imputation; Uncorrelated multivariate time series; Missing data; Dynamic Time Warping; Similarity measures.
Ano: 2017 URL: https://archimer.ifremer.fr/doc/00429/54082/55378.pdf
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional