Sabiia Seb
        Busca avançada

Botão Atualizar

Botão Atualizar

Ordenar por: RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 1
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
A study on CNN-based detection of psyllids in sticky traps using multiple image data sources. Repositório Alice
Abstract: Deep learning architectures like Convolutional Neural Networks (CNNs) are quickly becoming the standard for detecting and counting objects in digital images. However, most of the experiments found in the literature train and test the neural networks using data from a single image source, making it difficult to infer how the trained models would perform under a more diverse context. The objective of this study was to assess the robustness of models trained using data from a varying number of sources. Nine different devices were used to acquire images of yellow sticky traps containing psyllids and a wide variety of other objects, with each model being trained and tested using different data combinations. The results from the experiments were used...
Tipo: Artigo em periódico indexado (ALICE) Palavras-chave: Aprendizado profundo; Robustez de modelo; Variedade de dados; Redes neurais; Redes Neurais Convolucionais; Citrus huanglongbing; HLB; Imagens digitais; Deep learning; Model robustness; Data variety; Convolutional Neural Networks; Citrus; Neural networks; Digital images.
Ano: 2020 URL:
Registros recuperados: 1
Primeira ... 1 ... Última

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC:

Valid HTML 4.01 Transitional