Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 14
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
3DMCAP documentation: release 1.0. Infoteca-e
SANTOS, T. T..
This document is the user manual of a tool, 3DMCAP, developed by our Automation Group for photogrammetry using a single camera and a notebook computer. Our staff was able to use it to recover the three-dimensional structure of plants in greenhouses and in open fields, including vines, coffee trees, maize, sunflower, soybean eucalyptus trunks.
Tipo: Documentos (INFOTECA-E) Palavras-chave: Manual do usuário; Ferramenta 3DMCAP; Imagem digital; Visão computacional; Fotogrametria; Photogrammetry; Digital images; Image analysis; Computer vision.
Ano: 2018 URL: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1102027
Imagem não selecionada

Imprime registro no formato completo
Comparison of shape analysis methods for Guinardia citricarpa ascospore characterization Electron. J. Biotechnol.
Pazoti,Mário Augusto; Garcia,Rogério Eduardo; Cruz Pessoa,José Dalton; Martinez Bruno,Odemir.
Among the diseases affecting the commercial citrus production, the citrus black spot (CBS) is considered to cause substantial losses. The analyses of particles in suspension in the orchards and collected into a disc have been applied as a preventive action trying to identify the presence of fungus spores before symptom appearance. In this paper, we show the results of several shape analysis methods applied to the fungus, the first step to the aimed computer aided vision system, capable to assist the identification process. Experiments and comparative results among the methods are presented in this paper, showing that better results were obtained applying the curvature method
Tipo: Journal article Palavras-chave: Computer vision; Curvature; Pattern recognition; Shape analysis; Shape signature and projection.
Ano: 2005 URL: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582005000300006
Imagem não selecionada

Imprime registro no formato completo
Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review. Repositório Alice
PATRICIO, D. I.; RIEDER, R..
bitstream/item/185724/1/ID44405-2008CompElectroAgricv153p69.pdf
Tipo: Artigo em periódico indexado (ALICE) Palavras-chave: Inteligência artificial; Agricultura de Precisão; Precision agriculture; Artificial intelligence; Computer vision.
Ano: 2018 URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1099103
Imagem não selecionada

Imprime registro no formato completo
Computer vision for larval structures identification applied to forensic science. Repositório Alice
OLIVEIRA, C. E.; LIMA, L. R. de; OLIVEIRA, G. R. A. de; GONÇALVES, A. B.; PISTORI, H.; KOLLER, W. W..
The diptera maggots are used in forensic entomology to estimate the post-mortem interval (PMI). Maggots have a wide range of morphological and structural features that aid in the identification. In order to assist in the necrophagous larvae identification, this research aims to develop a software using computer vision and machine learning to automate the classification process. Diptera maggots were collected in a dead pig at the capital of Mato Grosso do Sul state, Campo Grande. The maggots were identified and photographed at a light microscope (5x objective). Next, the images were processed, the features extraction was performed using an extractor in Python language. The classification of the images were tested with AdaBoost, Random Forest, Random Tree...
Tipo: Artigo em anais de congresso (ALICE) Palavras-chave: Entomology; Insect larvae; Computer vision.
Ano: 2016 URL: http://www.alice.cnptia.embrapa.br/handle/doc/1061783
Imagem não selecionada

Imprime registro no formato completo
Detecção automática de bagas de café em imagens de campo. Repositório Alice
SANTOS, T. T..
O presente trabalho propõe um método para detecçãao automática de bagas em imagens de cafeeiros tomadas em campo sob luz ambiente.
Tipo: Artigo em anais de congresso (ALICE) Palavras-chave: Aprendizado de máquina; Imagem digital; Machine learning; Café; Visão computacional; Fruticultura; Image analysis; Fruit growing; Artificial intelligence; Computer vision.
Ano: 2015 URL: http://www.alice.cnptia.embrapa.br/handle/doc/1027251
Imagem não selecionada

Imprime registro no formato completo
Fenotipagem de plantas em larga escala: um novo campo de aplicação para a visão computacional na agricultura. Repositório Alice
SANTOS, T. T.; YASSITEPE, J. E. de C. T..
O presente capítulo apresenta uma visão geral dos avanços recentes na fenotipagem em larga escala (Seção 2) e como a visão computacional surge como ferramenta para a caracterização fenotípica não-destrutiva da parte aérea de plantas (Seção 3). O capítulo se encerra (Seção 4) apresentando cenários futuros de pesquisa nessa área.
Tipo: Capítulo em livro científico (ALICE) Palavras-chave: Visão computacional; Digitalização de plantas; Fenotipagem de plantas; Análise de imagens; Computer vision; Image analysis; Phenotype.
Ano: 2014 URL: http://www.alice.cnptia.embrapa.br/handle/doc/1010708
Imagem não selecionada

Imprime registro no formato completo
Índice de cobertura verde para imagens de altíssima resolução. Repositório Alice
NEVES, M. C.; NEVES JÚNIOR, O. R.; LUIZ, A. J. B.; SANCHES, I. D..
The low altitude aerial images are becoming more common every day due to low cost and ease of use of platforms such as remotely piloted aircraft. The potential application of this type of data is very high. One example is the precision agriculture, a farming management concept based on observing, measuring and responding to inter and intra-field variability in crops, an activity than can greatly benefit from this technology. The low altitude of image acquisition allows very high level of scene details but aggravates problems such as lighting variation and image deformation. In addition, often common cameras are used in different situations altitude, inclination, lighting and camera setup. These specific characteristics in relation to the orbital data...
Tipo: Artigo em anais de congresso (ALICE) Palavras-chave: Image processing; Processamento de imagem; Visão computacional; Índice de área foliar; Agricultura; Sensoriamento remoto; Imagem de satélite; Remote sensing; Image analysis; Computer vision; Agriculture; Leaf area index.
Ano: 2017 URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1084549
Imagem não selecionada

Imprime registro no formato completo
Introdução à visão computacional e ao processamento de imagens com OpenCV: Módulo I - processamento de imagens. Infoteca-e
EMBRAPA INFORMÁTICA AGROPECUÁRIA..
Objetivo. Programação. Público-alvo e requisitos. Ministrante. Organização.
Tipo: Fôlder / Folheto / Cartilha (INFOTECA-E) Palavras-chave: Visão computacional; Biblioteca de software de código aberto OpenCV; Processamento de imagens; Image processing; Computer vision.
Ano: 2011 URL: http://www.infoteca.cnptia.embrapa.br/handle/doc/921243
Imagem não selecionada

Imprime registro no formato completo
Métrologie 3D par vision active sur des objets naturels sous-marins ArchiMer
Espiau, Francois-xavier.
This PhD Thesis concerns the application of computer vision techniques to natural underwater images. Recently, advances in projective geometry have given a strong formalism to computer vision reconstruction algorithms and has allowed real improvements. Nevertheless, many algorithms may have problems with natural scenes. We present here a complete methodology to make a projective reconstruction of natural scenes from underwater images taken with one uncalibrated camera. In the first step, we are interested in extracting robust features which is a necessary step of image processing. Due to the particular scenes we observe (no geometric simple forms, high noise, no knowledge of the environment), we choose a robust implementation of a point detector based...
Tipo: Text Palavras-chave: Underwater images; Robust matching; Multi scale approach; Interest points; Projective reconstruction; Computer vision; Images sous marines; Appariement robuste; Approche multi échelles; Points d'intérêt; Reconstruction projective; Vision par ordinateur.
Ano: 2002 URL: http://archimer.ifremer.fr/doc/2002/these-302.pdf
Imagem não selecionada

Imprime registro no formato completo
Produção de ortomapas com VANTs e OpenDroneMap. Infoteca-e
SANTOS, T. T.; KOENIGKAN, L. V..
Introdução. Princípios de fotogrametria. Correspondências entre imagens. Captura de imagens com multirrotores. Legislação. Planejamento da missão. Configurações. GCPs. Checklist. Utilização do OpenDroneMap. Instalação. Execução. Resultados produzidos. Outras opções e configurações do ODM. Interrupção do ODM. Algoritmos empregados pelo OpenDroneMap. Conclusões.
Tipo: Circular Técnica (INFOTECA-E) Palavras-chave: Veículos Aéreos Não-Tripulados; Ortomapas; OpenDroneMap; Software de visão estéreo múltipla; Visão computacional; Fotogrametria; Photogrammetry; Computer vision.
Ano: 2018 URL: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1102033
Imagem não selecionada

Imprime registro no formato completo
SciPy and OpenCV as an interactive computing environment for computer vision. Repositório Alice
SANTOS, T. T..
In research and development (R&D), interactive computing environments are a frequently employed alternative for data exploration, algorithm development and prototyping. In the last twelve years, a popular scientific computing environment flourished around the Python programming language. Most of this environment is part of (or built over) a software stack named SciPy Stack. Combined with OpenCV?s Python interface, this environment becomes an alternative for current computer vision R&D. This tutorial introduces such an environment and shows how it can address different steps of computer vision research, from initial data exploration to parallel computing implementations. Several code examples are presented. They deal with problems from simple image...
Tipo: Artigo em periódico indexado (ALICE) Palavras-chave: Computação; Computer vision; Digital images; Image analysis.
Ano: 2015 URL: http://www.alice.cnptia.embrapa.br/handle/doc/1015739
Imagem não selecionada

Imprime registro no formato completo
Stéréovision Locale et Reconstruction 3D/4D ArchiMer
Brandou, Vincent.
The aim of this study is to propose a complete 3-dimension reconstruction method of natural submarine objects improved by a new acquisition method for quantitative measures, which can be used in operational conditions. First, it was necessary to take into account the various problems connected with the deep sea environment; the main constraint is that the system used to collect images must be manipulated at very important depths, up to 6000 meters by an underwater vehicle positioned on the sea floor. Thus, a method allowing the automatic acquisition of images was developed, adapted to any type of small-scale submarine object (approximately 1m3). The image acquisition is performed with a stereovision system operated by a manipulator arm. The method that we...
Tipo: Text Palavras-chave: 3D reconstruction; Camera trajectory; Visual servoing; Stereovision system; Computer vision; 3D metrology; Reconstruction 3D; Trajectoire d'acquisition; Asservissement visuel; Stéréovision; Vision par ordinateur; Métrologie 3D.
Ano: 2008 URL: http://archimer.ifremer.fr/doc/2008/these-6478.pdf
Imagem não selecionada

Imprime registro no formato completo
The circlet transform: A robust tool for detecting features with circular shapes ArchiMer
Chauris, H.; Karoui, Imen; Garreau, Pierre; Wackernagel, H.; Craneguy, Philippe; Bertino, L..
We present a novel method for detecting circles on digital images. This transform is called the circlet transform and can be seen as an extension of classical 1D wavelets to 2D; each basic element is a circle convolved by a 1D oscillating function. In comparison with other circle-detector methods, mainly the Hough transform, the circlet transform takes into account the finite frequency aspect of the data; a circular shape is not restricted to a circle but has a certain width. The transform operates directly on image gradient and does not need further binary segmentation. The implementation is efficient as it consists of a few fast Fourier transforms. The circlet transform is coupled with a soft-thresholding process and applied to a series of real images...
Tipo: Text Palavras-chave: Circlet transform; Circle detection; Image processing; Multi-scale representation; Computer vision.
Ano: 2011 URL: http://archimer.ifremer.fr/doc/00033/14451/11752.pdf
Imagem não selecionada

Imprime registro no formato completo
Vide-omics: A Genomics-inspired Paradigm for Video Analysis ArchiMer
Kazantzidis, Ioannis; Florez-revuelta, Francisco; Dequidt, Mickael; Hill, Natasha; Nebel, Jean-christophe.
With the development of applications associated to ego-vision systems, smart-phones, and autonomous cars, automated analysis of videos generated by freely moving cameras has become a major challenge for the computer vision community. Current techniques are still not suitable to deal with real-life situations due to, in particular, wide scene variability and the large range of camera motions. Whereas most approaches attempt to control those parameters, this paper introduces a novel video analysis paradigm, ‘vide-omics’, inspired by the principles of genomics where variability is the expected norm. Validation of this new concept is performed by designing an implementation addressing foreground extraction from videos captured by freely moving cameras....
Tipo: Text Palavras-chave: Computer vision; Freely moving camera; Genomics; Foreground detection; Segmentation; Scanlines.
Ano: 2018 URL: http://archimer.ifremer.fr/doc/00405/51643/52191.pdf
Registros recuperados: 14
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional