Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 3
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Daucus carota as a novel model to evaluate the effect of light on carotenogenic gene expression Biol. Res.
STANGE,CLAUDIA; FUENTES,PAULINA; HANDFORD,MICHAEL; PIZARRO,LORENA.
Carotenoids are synthesized in prokaryotic and eukaryotic organisms. In plants and algae, these lipophilic molecules possess antioxidant properties acting as reactive oxygen species scavengers and exert functional roles in hormone synthesis, photosynthesis, photomorphogenesis and in photoprotection. During the past decade almost all carotenogenic genes have been identified as a result of molecular, genetic and biochemical approaches utilizing Arabidopsis thaliana as the model system. Studies carried out in leaves and fruits of A. thaliana and tomato determined that light regulates carotenoid biosynthesis preferentially through the modulation of carotenogenic gene transcription. In this work we showed for the first time that light induces accumulation of...
Tipo: Journal article Palavras-chave: Carotenoid biosynthesis; Carrot; Gene expression; Light regulation.
Ano: 2008 URL: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602008000300006
Imagem não selecionada

Imprime registro no formato completo
Light-dependent regulation of carotenoid biosynthesis in plants Ciencia e Investigación Agraria
Pizarro,Lorena; Stange,Claudia.
Carotenoids are colored terpenes synthesized in plants, algae and some yeasts and bacteria. In plants and algae, these lipophilic molecules exert functional roles inhormonesynthesis, photosynthesis, photomorphogenesis and photoprotection. Additionally, they possess antioxidant properties and act as scavengers of reactive oxygen species. During the past decade almost all of the carotenogenic genes have been identified by molecular, genetic and biochemical approaches in the Arabidopsis thaliana model system. Carotenoid biosynthesis in plants is highly regulated, although all of the processes involved have not yet been identified. In this work, we review the mechanisms involved in the light-mediated regulation of carotenoid biosynthesis and the effect of...
Tipo: Journal article Palavras-chave: Carotenoid biosynthesis; Gene expression; Light regulation; Plants.
Ano: 2009 URL: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202009000200001
Imagem não selecionada

Imprime registro no formato completo
Response of CO2-starved diatom Phaeodactylum tricornutum to light intensity transition ArchiMer
Heydarizadeh, Parisa; Boureba, Wafaa; Zahedi, Morteza; Huang, Bing; Moreau, Brigitte; Lukomska, Ewa; Couzinet-mossion, Aurelie; Wielgosz-collin, Gaetane; Martin-jezequel, Veronique; Bougaran, Gael; Marchand, Justine; Schoefs, Benoit.
In this study, we investigated the responses of Phaeodactylum tricornutum cells acclimated to 300 mu mol m(-2) s(-1) photon flux density to an increase (1000 mmol m(-2) s(-1)) or decrease (30 mmol m(-2)s(-1)) in photon flux densities. The light shift occurred abruptly after 5 days of growth and the acclimation to new conditions was followed during the next 6 days at the physiological and molecular levels. The molecular data reflect a rearrangement of carbon metabolism towards the production of phosphoenolpyruvic acid (PEP) and/or pyruvate. These intermediates were used differently by the cell as a function of the photon flux density: under low light, photosynthesis was depressed while respiration was increased. Under high light, lipids and proteins...
Tipo: Text Palavras-chave: Phaeodactylum tricornutum; Carbon metabolism; Light regulation; Photosynthesis; Chlorophyll fluorescence; Pyruvate hub.
Ano: 2017 URL: http://archimer.ifremer.fr/doc/00395/50620/52341.pdf
Registros recuperados: 3
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional